
Week 15 - Wednesday



 What did we talk about last time?
 Review up to Exam 1 and halfway to Exam 2





 Time: Friday, 12/13/2024, 2:45 - 4:45 p.m.

 The exam will have:
 Short answer questions
 At least one matching question
 One or two diagrams or figures you must create
 Two to three essay questions







 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer 

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that



 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand, 

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your 

hand
 Of course, it is often impossible to follow these guidelines



 Each module should shield the internal details of its operation from other 
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide 

data (and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other thins
 Modules that hide information are easier to understand, test, and reuse because 

they stand on their own
 Modules that hide information are more secure and less likely to be affected by 

outside errors
 This is why we use mutators and accessors instead of making members 

public



 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are 
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently 
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific 
problem or set of classes

 Using interfaces helps



 Module cohesion is how much the stuff in the module is 
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information 

possible about other classes
 More module cohesion usually leads to looser module 

coupling
 Sometimes a module being hard to name suggests that its 

data or operations are not cohesive



 The design process is a microcosm of 
the larger software development 
process

 The steps are analyzing the problem, 
proposing solutions (and looking up 
existing solutions to similar problems), 
and evaluating the solutions (perhaps 
combining different solutions) until a 
design is selected

Analyze Design 
Problem

Design 
Problem

Generate and 
Improve Candidate 

Designs

Evaluate Candidate 
Designs

Select Design

Design 
Specification

Adequate

Inadequate

Finalize Design



 Architectural design is specifying a 
program's major components

 Architectural design is often modeled 
with a box-and-line diagram (also 
called a block diagram)
 Components are boxes
 Relationships or interactions between 

them are lines
 Unlike UML diagrams, box-and-line 

diagrams have no standards
 Draw them in a way that communicates 

your design



 The Model-View-Controller (MVC) 
style fits many kinds of web or GUI 
interactions

 The model contains the data that is 
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the 

model and selects which view to use
 The Java Swing GUI system is built 

around MVC
 Good: greater independence between 

data and how it's represented
 Bad: additional complexity for simple 

models



 Organize the system into layers
 Each layer provides services to layers 

above it, with the lowest layer being the 
most fundamental operations

 Layered styles work well when adding 
functionality on top of existing systems

 Good: entire layers can be replaced as 
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers, 
and performance sometimes suffers



 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure



 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be 

unpredictable



 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for 

component reuse
 Bad: each component has to agree on formatting with its inputs and 

outputs





 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes 

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations 
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be 
specified
 Classes might contain others that aren't shown



 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to 
the interface



 Associations are show with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing 

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges, 

and * means zero or more
 When a class is part of another class, the part is 

connected by a line and a diamond (the 
aggregation connection) to the whole



From visual-paradigm.com





 Software design patterns are ways of designing objects that 
have been used successfully in the past
 Think of them as rough blueprints or guidelines

 Design patterns have four essential elements:
 A meaningful name
 A description of the problem area that explains when the pattern may be 

applied
 A solution description of the parts of the design, their relationships, and 

their responsibilities
 A statement of the consequences of using the design pattern

 Patterns are more abstract than code



 The composite pattern is useful for 
part-whole hierarchies of objects

 A group of objects somewhere in the 
hierarchy can be treated like a single 
object

 The Swing library uses the composite 
pattern for its graphical components

 Problems the composite pattern 
solves:
 Representing a part-whole hierarchy so 

that clients can treat parts and wholes the 
same

 Representing a part-whole hierarchy as a 
tree



 The command pattern is 
useful for encapsulating an 
action in an object

 The action is independent from 
the objects that used it and can 
be stored for later

 The Swing library uses the 
command pattern for events

 Problems the command 
pattern solves:
 Decoupling the requester from a 

request



 The decorator pattern provides a way 
to add responsibilities to an object 
dynamically at run-time

 It is commonly used to customize the 
appearance of GUI elements

 The Swing library uses the decorator 
pattern to customize borders

 Problems the decorator pattern 
solves:
 Adding responsibilities to an object 

dynamically at run-time
 Providing a flexible alternative to 

inheritance for extending functionality



 The observer pattern is useful for a one-to-many dependency where one object changing can 
update many other objects

 An observer pattern defines Subject and Observer objects
 When a subject changes state, registered observers are updated automatically
 Problems the observer pattern solves:
 Making a one-to-many dependency between objects without tightly coupling the objects
 Updating an arbitrarily large number of other objects automatically when one object changes state



 The factory method design 
pattern allows a method to 
be overridden so that a child 
class can determine what kind 
of object to create

 A factory method is defined 
that is used to create objects

 Problems the factory method 
pattern solves:
 Allowing subclasses to define 

which class to instantiate



 The abstract factory 
pattern is similar except 
that it uses some object as 
a factory instead of 
overriding a method

 Problems the abstract 
factory pattern solves:
 Making a class be 

independent of the objects it 
requires

 Making a family of related 
objects



 Sometimes it's useful to have only a 
single instance of a class

 The singleton pattern makes it so that 
it's possible to make only one object of a 
class and makes it easy to access

 Problems the singleton pattern solves:
 Ensuring that there's only one instance of a 

class
 Making the instance of a class easy to get



 The strategy pattern allows an 
algorithm to be selected at run-
time

 In Java, that algorithm is usually 
encapsulated in the method of an 
object

 Problems the strategy pattern 
solves:
 Configuring a class with an algorithm 

at run-time
 Selecting or exchanging an algorithm 

at run-time



 Sometimes you have an object that 
doesn't generate the right kind of 
output

 The adapter pattern allows you to 
turn the output from something that 
gives one kind of output into the kind 
you need

 Problems the adapter pattern solves:
 Reusing a class that doesn't have an 

interface the client requires
 Allowing classes with incompatible 

interfaces to work together





 A bought and customized system is one with several bought subsystems 
that have been customized and integrated into a product that satisfies 
requirements

 Pros:
 Widely used components are usually reliable
 Good documentation and standards exist for using such components
 Constructing these systems is usually faster, and costs are easier to predict

 Cons:
 Increased dependency on outside organizations and their support
 Lowered flexibility
 Software engineers have less creative control, potentially reducing job 

satisfaction (boohoo)



 Idioms in programming languages are common ways to express ideas
 Example Java idioms:
 Use for loops when you want to repeat a specific number of times
 Use while loops when you don't know how much you're going to repeat
 Use a three-line swap to exchange values

 It's a good idea to read code in a language you don't know well to figure 
out the idioms that people use

 Some people use idioms from languages they know better that can be 
either inefficient or confusing if they're not used in a different language

 Syntactic sugar is a kind of formalized idiom
 An easy-to-use grammatical structure is converted to a harder-to-read one 

behind the scenes
 Example: enhanced for loops in Java



 Each language has stylistic considerations for how to write 
readable code
 Many workplaces and open source projects publish style guidelines

 Naming conventions cover how to name variables, methods, 
classes, files, packages, etc.
 Spelling matters
 Capitalization is often a matter of convention
 Being consistent makes everything clearer



 Most languages encourage either snake case or camel case
 Snake case breaks up words with underscores: nuclear_silo_radius
 Camel case breaks up words with capitalization: nuclearSiloRadius
 Snake case is common in C and Python
 Camel case is common in Java and C#
 Very few programming languages allow spaces in variable names

 I prefer variables to be explicit so that it's clear what we're talking about even if we start 
reading in the middle of unfamiliar code
 Java tends toward the explicit rather than the abbreviated

 A few other Java naming conventions:
 Packages are all lowercase
 Local variables, member variables, and methods start with lowercase letters
 Classes, enums, and interfaces start with uppercase letters
 Constants are written in snake case with ALL CAPS



 Many languages (with the notable exception 
of Python) ignore whitespace

 Thus, we have a choice about how to layout 
our code

 In C-family, curly brace languages, it's 
common to put the opening brace of an if
statement, method, or loop either on the 
same line as the header (K&R style) or on the 
next line (Allman style)
 K&R is more common for Java, but Allman is 

more common for C#
 Some people also have strong feelings that 

indentation should be tabs while others 
prefer spaces

 A common convention is that lines of code 
should not exceed 80 characters

if(raining) {
System.out.println("I'm wet!");

}

if(raining)
{

System.out.println("I'm wet!");
}

K&R style

Allman style



 Do use comments to describe the intent of a complicated piece of 
code

 Do use comments to explain the rationale behind a decision so 
that people can understand in the future
 Why this way?
 Why not that other way?

 Do use comments to reference relevant outside documents
 Explanation of an algorithm
 API documentation page
 Design document with UML diagrams



 Don't use comments to repeat 
the code

 Be careful about using 
comments for to-do items and 
future work
 Especially if it means you don't do 

the right thing now
 It is possible to over-comment, 

so consider whether the 
supplemental information is 
useful

// Increase i by 1
++i;

// Include sales[i] in the total
total = total + sales[i];

Bad comments that repeat the code



 Programs often include data, but how should it be organized?
 Data structures store the data in the program, but the data 

also needs to be stored between program runs or sent to 
someone else to use
 Internal data vs. external data

 Common data organization approaches
 Markup languages
 Databases



 We already know the value of a version control system (VCS)
 Some details:
 A VCS stores items (usually files)
 A version is the set of items after one or more modifications
 A revision is a version stored in a VCS
 A baseline is the first revision
 Storage for revisions is called a repository
 Storing a version in the repository is called checking in or committing
 Retrieving a version from the repository is called checking out or 

updating
 A checked-out version of an item is a working copy



 How do we deal with two or more different people working on the 
same file and trying to commit them to the same repository?
 File locking: When a files are checked out for modification, they are 

locked, meaning that no one else can check them out for modification
 Concurrent modification and merge: If someone tries to commit a file 

based on an older version of the file, the commit fails, forcing the person 
to merge the newer repository file with the file they're working on

 Before you start modifying a file, it's wise to pull down the latest 
changes first

 A centralized VCS has one central repository
 A distributed VCS has many repositories that are peers





 Static analysis is looking at code without running it
 Code reviews
 Syntax checking
 Style checking
 Usage checking
 Model checking
 Data flow analysis
 Symbolic evaluation

 Dynamic analysis is running code to test it
 Unit testing
 Debugging
 Performance optimization and tuning

 Both static and dynamic analysis are valuable and have different strengths
 Static analysis doesn't require a fully working program
 Dynamic analysis can give real data about things like performance



 Desk checking is one form of code review
 Looking over the code
 Executing it by hand (actually computing values)

 Formal inspections (discussed earlier) are another
 Formal review guidelines
 Don't read more than 200 lines of code per hour when preparing alone
 Don't cover more than 150 lines of code when doing a team inspection
 Use a checklist

 Examples from a Java inspection checklist
 All variables and constants are named in accord with naming conventions
 There are no variables or attributes with confusingly similar names
 Every variable and attribute has the correct data type
 Every method returns the correct value at every return point
 All methods and attributes have appropriate access modifiers (private, protected, or public)
 No nested if statements should be converted into a switch statement
 All exceptions are handled appropriately



 Formal methods use mathematical models to do static analysis
 Model checking uses analysis to determine if a program meets 

requirements, usually if certain preconditions are met, it's 
guaranteed that certain postconditions will be met

 Data flow analysis represents a program as a graph and uses that 
knowledge to calculate the possible values at various points in the 
graph
 Modern languages like Java use data flow analysis to complain, for 

example, that a variable might not have been initialized
 Symbolic evaluation traces through the execution of a program 

with symbolic values instead of concrete values





 Testing is an important form of dynamic analysis
 Unit testing is testing individual units or sub-programs (classes or 

methods in Java) in isolation
 A test case has one value for every input and an expected value 

for every output
 A false negative happens when there's a problem with your code 

but you don't write a test that catches it
 This almost always happens, since it's very hard to test everything

 A false positive happens when your code is fine but your test is 
bad
 For example, you did the math wrong when coming up with your expected 

answer



 Picking good test cases is an art form
 Black box testing is a strategy that assumes no knowledge of 

what happens inside the system
 Only what the input and matching output should be are known
 Black box testing is easily done by someone who had nothing to do with 

developing the code
 Black box testing isn't affected by assumptions about how an algorithm 

should work
 Clear box (or white box or open box) testing uses knowledge of 

the system to generate good tests
 Both kinds of testing are needed to be thorough



 Clear box testing is built around the idea of coverage, which is 
how much of the unit is tested

 Coverage can be explore with a control-flow graph (CFG) that 
shows the possible paths execution could take in a program
 An action node in a CFG is straight-line code with one entry point 

and one exit point
 A decision node in a CFG is code like an if statement or a loop with 

multiple exit points
 Arrows show the flow of execution through nodes



int calculate(int x, int y)
{

int a, b;
a = 1; // S1
if (x > y) // S2
{

a = 2; // S3
}
x++; // S4
b = y * a; // S5
if (y <= 0) // S6
{

b++; // S7
}
return b; // S8

}

S1

S2

S3

S4

S5

S6

S7

S8

calculate(int x, int y)

[else] [x > y]

[else] [y <= 0]



 We say a statement is exercised by a test or a suite of tests if it gets executed
 Statement coverage is the percentage of statements exercised by a set of 

tests
 Example: (x = 1, y = 2) exercises everything except S3 and S7 in the previous CFG, 

giving a statement coverage of 75%
 Branch coverage is the percentage of branch directions taken by a set of tests
 Example: (x = 1, y = 2) covers the else edge from S2 and the else edge from S6, 

giving a branch coverage of 50%
 Path coverage is the percentage of all execution paths that have been taken
 Example: (x = 1, y = 2) takes only one of the four paths from S1 to S8, giving a path 

coverage of 25%
 More coverage is better
 It will usually take many tests to get good coverage



 Boundary value analysis uses values near the edges of legal limits
 If input must be within a range, create tests just below, at, and just above the endpoints 

of the range
 If output must be in a certain range, try to pick inputs that generate values around the 

minimum and maximum of that range
 Example: Boundary values for a method that's supposed to accept passwords if 

they're between 6 and 12 characters inclusive
Input Length Case Valid

"goats" 5 Minimum – 1 False

"wombat" 6 Minimum True

"wombats" 7 Minimum + 1 True

"abracadabra" 11 Maximum – 1 True

"hippopotamus" 12 Maximum True

"administrator" 13 Maximum + 1 False



 A number of other heuristics are commonly used because they often find errors
 For single input parameters
 0 (because people forget about 0 or because of division by 0)
 Very large and very small numbers (because of underflow and overflow)
 Character or string versions of numbers (which makes sense in a language like Python or 

JavaScript but not in Java where type checkers would prevent such thins)
 For multiple input parameters
 Equal values for the parameters
 Different relative values (x larger than y, then x smaller than y)

 For arrays and collections
 Very small and very large arrays and collections
 Arrays or collections of length 0 and 1
 Arrays or collections that are unsorted, ascending, and descending
 Arrays or collections with duplicated values and with no duplicated values



 Something's wrong with your program, so you change your code, what 
happens?

 Data suggests that
 30% of software changes result in one of the three bad outcomes
 On average, bad outcomes occur about 10% of the time
 Faults introduced during bug fixes are harder to find and remove than others

 One safeguard is regression testing, running all tests after any software 
change
 Any time you find a bug, add the test you used to find the bug into your test suite

No New Fault Introduced New Fault Introduced

Fault Corrected Good Bad

Fault Not Corrected Bad Very Bad



 JUnit is a popular framework for automating the unit testing 
of Java code

 JUnit is built into IntelliJ and many other IDEs
 It is possible to run JUnit from the command line after 

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate 

unit testing for many languages
 You are required to make JUnit tests for Project 3
 JUnit 5  is the latest version of JUnit, and there are small 

differences from previous versions



 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test  has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}



 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert 

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual 
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String 
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)



 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}



 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail() method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}





 Debugging is using trigger conditions to identify and correct faults
 Steps of debugging

1. Stabilize: Understand the symptom and trigger condition so that the failure 
can be reproduced

2. Localize: Locate the fault
▪ Examine sections of code that are likely to be influenced by the trigger
▪ Hypothesize what the fault is
▪ Instrument sections of code (with print statements or conditional breaks)
▪ Execute the code, monitoring the instrumentation
▪ Prove or disprove the hypothesis

3. Correct: Fix the fault
4. Verify: Test the fix and run regression tests
5. Globalize: Look for similar defects in the rest of the system and fix them



 Debug code is temporary output and input used to monitor what's going 
on in the code

 Instead of printing out just numbers, add context information so that the 
debug statements are clear

 Debug code is quick and dirty, useful when setting break points and 
tracing execution with a debugger might be too much work to catch a 
small issue

 There are logging tools that can print logging data at various levels
 Normally, nothing prints out
 Running the program in logging mode prints out important data
 Running the program in verbose mode prints out everything it can

 Debug output can go to stdout or stderr
 System.err (instead of System.out) prints to stderr in Java



 IntelliJ, Eclipse, Visual Studio, gdb and most fully-featured IDEs 
provide debugging tools

 Typical debugging features:
 Setting breakpoints that will pause execution of the program when 

reached
▪ Breakpoints can often be conditional, pausing only if certain conditions are met

 Executing lines of code one by one, stepping over method calls or 
stepping into them and stepping out when you're done executing its 
code

 Setting watches that display the current state of variables and members
 If you don't use your debugger, you're choosing to play the game 

with one hand tied behind your back



 Refactoring means changing working code into working code
 It can be done to improve the structure, the presentation, or the performance
 You should refactor when:
 There's duplication in your code
 Your code is unclear
 Your code smells:

▪ Comments duplicate code
▪ Classes only hold data (instead of operating on it)
▪ Information isn't hidden
▪ Classes are tightly coupled
▪ Classes have low cohesion
▪ Classes are too large
▪ Classes are too small
▪ Methods are too long
▪ switch statements are used instead of good object-orientation



 Renaming a variable or method
 Adding an explanatory variable
 If an expression is too long, storing a partial computation into a named variable 

can help it be understood
 Inline temporary variable
 If a temporary variable is useless, just use the full expression (the opposite of the 

previous)
 Break a method into two methods
 Combine two short methods into a single one
 Replace a conditional with polymorphism
 Instead of an if or a switch, behavior changes because different objects have 

overridden methods with different behavior
 Move methods from child classes to parent classes



 Test driven development (TDD) is a style of development 
where testing is an integral part of coding

 The key idea of TDD is that you write tests for the code before
you write the code
 Thus, the tests aren't distorted by writing the code

 TDD is used for Extreme Programming, but it can be used for 
any approach, agile or plan-driven



 You have to have a testing framework
 Tests are written before code
 Tests and code are written 

incrementally
 Write tests for some functionality, then 

write code to pass them
 Code is only written to pass tests
 "Doing the simplest thing that could 

possibly work"
 Refactoring is expected
 Writing code only to pass tests might end 

up with funky design

Write Tests

Run Tests

Write Code to 
Pass Tests

Refactor

[pass] [not pass]

[unit complete]

[u
ni

t i
nc

om
pl

et
e]



 By making the test first, you really understand what you're 
trying to implement

 Your testing has better code coverage, testing every segment 
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the 

problem likely is (the new code added)
 The tests are a form of documentation, showing what the 

code should and shouldn't do





 System testing is testing of the whole product
 Both unit testing and integration testing of individual classes and 

larger components should have been done by now
 Testing both functional and non-functional requirements

 System testing is necessary because:
 There could still be faults in the components
 Some things can't be fully tested without all the pieces together

 Alpha testing is the first stage of system testing
 Developers test behavior similar to what real users would do

 Beta testing has real users testing the product



 Alpha testing and the two phases of beta testing are similar, but 
there are some details that are different, summarized in this table

Alpha Testing
Beta Testing

Acceptance Testing Installation Testing

Personnel Testers Users Users

Environment Controlled Controlled Uncontrolled

Purpose Validation (Indirect) and Verification Validation (Direct) Verification

Recording Extensive Logging Limited Logging Limited Logging



 Functional alpha testing is based on the requirements listed in 
the product specification

 To isolate failures, basic functionality is tested before more 
complex functionality

 Operational profiles give information about how often 
different use cases come up and the typical order of use cases
 Using these profiles, testers can make tests that simulate typical 

usage



 Some non-functional requirements are development requirements
 Cost of the product
 Time the product takes to be made

 Development requirements generally can't be tested, but there are many kinds of non-
functional execution requirements that are testable

 Common non-functional execution tests:
 Timing tests time the amount of time needed to perform a function, sometimes using 

benchmarks, standard timing tests
 Reliability tests try to determine the probability that a product will fail within a time interval: 

mean time to failure
 Availability tests try to determine that probability that a product will be available within a time 

interval: percent up time
 Stress tests try to determine robustness (operating under a wide range of conditions) and 

safety (minimizing the damage from a failure)
 Configuration tests check the product on different hardware and software platforms



 Some user interface tests straddle the line between functional and 
non-functional

 Tests that check the user interface are called usability tests or 
human factors tests

 Internationalization or localization tests are a kind of usability 
test that check translations and other cultural information like 
currencies and the formatting of numbers, times, and dates

 Accessibility tests check whether the user interface works for all 
people, even with significant disabilities
 There are guidelines for the kinds of disabilities that need support (low 

visual acuity or color blindness)
 Testing often involves measuring the time needed to perform tasks



 Beta testing uses external testers, usually users from the 
population who will use your product

 These users have the duty to record and report failures
 Acceptance testing is a kind of beta testing done by clients to 

validate that the product meets their needs
 Done in a controlled environment, like the one alpha testing was done in

 Installation testing is a kind of beta testing using real users in 
uncontrolled environments
 Instead of validation, the goal is to verify that the product works properly 

in a (more) real environment
 Installation testing can be inefficient, since the users often do not give the 

most detailed feedback





 The product has been designed, constructed, and tested…now 
what?

 Users will actually use the product in the production 
environment, the hardware and software systems where the 
product lives

 Making the product available in the production environment is 
called deployment

 Help that the developer (or their associates) provide to the user is 
called support

 Changes to the software after deployment are called 
maintenance



 Physical architecture is how the program lives in a file system and 
executes on processors
 As opposed to logical architecture, what we considered before

 Physical architecture can be structured by where it's installed, where it's 
executed, and where the data is uses is stored

 The following four categorizations are common:
 Personal: Software is installed and executed on a user device, where the data is
 Shared: Software is installed on a shared device and temporarily loaded on the 

user device where it is executed on user data
 Mainframe: Software is installed and executed on a shared device accessible 

from a user device (terminal) using data stored on the shared device
 Cloud: Software is installed on a shared device and temporarily loaded on the 

user device where it is executed using data stored on the shared device



 Like logical architecture, physical architectures 
can be modeled using UML

 UML deployment diagrams contain artifacts and 
nodes
 Artifacts are physical components like files

▪ Represented as rectangles with the stereotype «artifact» 
or an icon

 Nodes are physical devices or execution 
environments like an operating system
▪ Represented as boxes with the stereotype «device», 

«execution environment», or some other description
 Communication between nodes is shown with a 

solid line
 The deployment relationship is show by putting 

the artifact in the node box, listing the artifacts in 
the node box, or using a dashed arrow with the 
stereotype «deploy»



 Deployment has the following steps
 Release: Assembling the artifacts into a distributable package (like a 

zip file or an installer tool)
 Install: Bringing the distributable package to the production 

environment and putting the artifacts in the right nodes
 Activate: Start the executable artifacts

 Ideally, the installation and activation appear to be atomic
 They happen as if they are a single activity
 They can be rolled back to the state before the installation



 Distribution has changed over time
 Once upon a time, someone with significant technical skill was 

needed to install software by hand
 Later, executable installers could be bought on disk or 

downloaded from the Internet
 Stores are now a common way to automatically install and update 

software
 Examples: Apple Store, Windows Store, Steam

 Package managers are used for open source software
 Examples: apt, rpm, dpkg, yum

 Containers like Docker are also used to provide software in a 
customized execution environment, ready to use



 Maintenance is a change to software after it's been deployed
 Corrective maintenance: Changes that fix faults after they have given rise 

to failures
 Preventative maintenance: Changes that correct faults before they give 

rise to failures (or to improve other characteristics like portability)
 Adaptive maintenance: Changes that keep the product usable in a 

changing environment
 Perfective maintenance: Changes that satisfy additional functional or 

non-functional requirements
 Since products are constantly changing in agile, it's not always 

clear what's maintenance and what's just another cycle of 
development



 Maintenance is expensive
 Some studies suggest that maintenance is responsible for 80% of the total effort 

surrounding a software product
 This is exactly why Microsoft pushes OS versions off the supported list as soon as it can

 Maintenance is expensive for many reasons:
 It goes on for a long time, maybe decades
 Software is poorly written to begin with, and maintaining only gets harder if new 

features are added
 Software structure deteriorates over time as changes are made
 In traditional processes, maintenance can take a long time and still end up with a bad 

result
 Agile processes overcome some of these issues by making maintenance a 

natural continuation of development



 Support are the activities between the user and a developer (or representatives 
of the developer) to help the user's experience

 Support is often put into two categories
 Professional support: The person providing support is employed by or paid by the 

developer
 Community support: The person providing support is another user or expert not 

employed by the developer
 Even professional support is usually not provided by the developers themselves
 Support teams usually have lower skills and are paid less
 Developers might not have the *ahem* interpersonal skills to deal with frustrated users
 Support teams often have better knowledge of the application domain (the thing the 

product is being used for)





 High level tasks are pretty easy to identify
 "Add networking support"

 But that level of detail isn't very useful
 Tasks are either:
 Non-decomposable, also called actions
 Decomposable, also called activities or processes

 The right level of detail is called a work package
 A work package is a task that is small enough and detailed enough to 

estimate



 A work breakdown structure (WBS) can be used to map out 
tasks at the right level of abstraction
 The book prefers hierarchy diagrams to represent a WBS, since they 

balance the readability of trees with the space efficiency of 
hierarchical lists

 Nodes in a WBS are work to be done
 The root of a WBS is the project name
 The first level is all the deliverables for a project
 Each level below represents more and more detailed work
 Leaf nodes are work packages



 The hierarchy diagram to the right 
shows a WBS for a home security 
product

 Note that different strategies can 
be used to decompose the work, 
especially at different levels:
 Project deliverables
 Product features or services
 Project phases
 Organizational units
 Physical product decomposition
 Logical product decomposition
 Geographical location of team 

members



 But how do you know if you've done a good job breaking things down?
 One hundred percent rule: Nodes descended from a parent represent 

100% of the work of the parent
 Nothing's left out
 No work is from outside the project

 Mutually exclusive siblings: No sibling nodes have overlapping work
 8 / 80 rule: Work packages (the leaves) take between 8 and 80 person-

hours of effort
 Work in that range (one day to two weeks) can be estimated reasonably well

 Get your project team and stakeholders together and make your WBS on 
a whiteboard



 In traditional processes, effort estimation can be done in a few 
ways:
 Analogy: Is your project like another project?  It should take about the 

same effort
▪ Problem: Only works if your project is very similar to another project

 WBS to effort: Estimate the effort for each work package in a WBS and 
add them up
▪ Problem: It's really hard to estimate effort accurately

 Size to effort: Estimate the size of the final software product and use 
some math to predict how much work it will take to make the product
▪ Problem: Oh, so many problems, which we'll discuss



 Functional measures of size have to do with how much 
functionality the program provides
 Number of pages on a website
 Number of reports in a database
 Number of windows in a GUI

 Non-functional measures of size are based on the program's 
structure
 Lines of code
 Number of classes

 Non-functional measures are easy to measure after development 
but hard to predict ahead of time



 Lines of code (LOC) is a count of the lines of code needed for a project
 LOC is the most popular non-functional measure of size

 Some people prefer source lines of code (SLOC), ignoring whitespace (and perhaps 
comments)
 It's even possible to weight some lines
 LOC is only meaningful in context, since some programming languages tend to take more LOC 

to get the same job done
 Estimating LOC is done by breaking the product design into smaller and smaller 

components until the size of each component can be estimated
 Accuracy is hard to achieve early on, since there isn't even a design yet

"Measuring programming progress by lines of code is 
like measuring aircraft building progress by weight."

-Bill Gates



 Alternatively, a functional measure of size is possible called function points
 Function points are calculated by looking at five different types of components, 

organized into two categories:
 Processes or Transactions
 External Inputs (EI): Processes that provide data that will be used or stored by the 

product
 External Queries (EQ): Processes that retrieve stored data
 External Outputs (EO): Processes that provide derived information to a user 

(performing calculations)
 Data Storage
 Internal Logical Files (ILF): Groupings of data maintained by the product
 External Interface Files (EIF): Groupings of data external to the product but used by the 

product



 All these estimates of size give us some arbitrary number, but 
how much effort is needed?

 Algorithmic cost models try to turn size estimates into a 
measure of effort called the person-month
 The amount of effort a normal developer does in one month
 Each person month has about 22 person-days
 Effort covers all work from requirements, design, coding, testing 

documentation, collecting data, management, and so on



 Maybe work grows linearly with function points
 Two different studies tried to model this to estimate effort 𝐸𝐸 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽
 They found the following:

 These results are frustrating
 The first one suggests that each function point adds ¼ person-month of work
 The second suggests each function point adds about 1 person-month of work

 They were looking at different organizations and different accounting of function points, 
so estimates might work well only within an organization that is consistent about such 
things

Study α β

Albrecht and Gafney -91.4 0.255

Kemerer -37.0 0.960



 Alternatively, some researchers have looked at exponential models relating thousands of 
lines of source code (KLOC) to total effort using the following equation, where L is KLOC:
 𝐸𝐸 = 𝛼𝛼 � 𝐿𝐿𝛽𝛽

 Results found the following values of α and β:

 Note here that β < 1 means economies of scale (time per line of code decreases at the 
project grows) while β > 1 means the opposite

Study α β

Watson and Felix 5.20 0.91

Basili and Freburger 1.38 0.93

Boehm 3.20 1.05



 Everything we said before was about waterfall estimates
 Scrum skips size estimates and goes straight for effort estimates
 As you know, units of effort in Scrum are called story points (or sometimes task 

points)
 Story points are relative units
 They're based on some of the smallest tasks, using them as a baseline of 1 story point
 Everything is estimated relative to those

 Story points aren't used for epics since they're too big and abstract
 As PBIs get refined, their effort estimate gets refined too
 By the time they're sprintable, they need a relatively accurate story point 

estimate
 This means that there are good estimates for sprintable stories but no 

estimates for how much work the whole project will take



 What if members of the team disagree on the story points needed 
for several stories?

 Agreement is needed for the sake of fairness and to plan how 
much work can actually get done in a sprint

 Planning poker is a way to bring the team to consensus about the 
relative difficulty of user stories

 Its goal is accuracy (ranking the stories by true difficulty) rather 
than precision (getting true estimates of how long things will take)
 It's really hard to get true estimates, but it's good to know which stories 

take more work



 First, the team decides what numbers to use as estimates
 The numbers are usually sequences that grow exponentially, written on cards
 Modified Fibonacci: 1, 2, 3, 5, 8 ,13, 20, 40, 100
 Powers of two: 1, 2, 4, 8, 16, 32, 64
 This means that large stories won't be estimated precisely, but that's okay

 Planning poker has rounds
 Each round estimates the effort for one PBI
 Each team member throws in one card to show her effort estimation
 If all cards match, the value is the estimate
 If they don't match, the team discusses their estimates, focusing on the highest and 

lowest estimators
 Repeat the round until consensus is reached

 It usually only takes a couple of rounds to reach consensus
 Estimates are usually pretty good because of discussion





 There are three software planning activities where finances are 
particularly important

 Buy or lease decision
 Should software or hardware be bought or leased?
 Will it cost more or less to use open-source software over time?

 Make or buy decision
 Should software be written from scratch or bought?

 Go or no-go decision
 Should a project (especially a software development project) be done or 

not?
 If the project is already running but there are issues, should it be 

continued?



 Assets are good things
 Liabilities are bad things
 Even so, for reasons best known to business people, debt is 

sometimes listed as an asset
 Take an accounting course if you want to go deep into this

 We will look at money from some actor's perspective
 Assets like deposits and revenues will be positive
 Liabilities like costs and rental payments will be negative



 Money seems simple, but a lot of the madness business people talk about 
boils down to a question:
 Would you rather be given $100 today or $110 a year from now?

 A similar question is:
 Should you spend $1,000 now to prevent a security hole that is likely to cost your 

business $10,000 over the next 10 years?
 The answer to both of these questions is:
 It depends.

 You cannot answer these questions without considering what else you 
would be doing with the money over the time periods in question

 Money doesn't simply sit around: it can be invested with the chance to 
grow over time



 What money is doing over time is earning interest
 Interest is built around a few variables:
 The present value P of the money
 The number of periods n during which the money will be earning interest
 The periodic interest rate r, which is the percentage of the present value the 

money will earn each period
 With simple interest, the interest 𝐼𝐼 = 𝑃𝑃 � 𝑛𝑛 � 𝑟𝑟
 Future value 𝛽𝛽𝑛𝑛 = 𝑃𝑃 + 𝐼𝐼
 Example:
 𝑃𝑃 = $1,000,𝑛𝑛 = 5, 𝑟𝑟 = 0.70%
 𝐼𝐼 = $1,000 � 5 � 0.007 = $35
 𝛽𝛽𝑛𝑛 = $1,035



 Our example with $1,000 at 0.7% interest for 5 years was simple interest
 Which no one actually uses

 Compound interest means that when you earn interest in one period, 
you get to earn interest on that interest in the next period

 If we compounded every year, our example would become:
 𝛽𝛽𝑛𝑛 = $1,000 � 1.007 ⋅ 1.007 ⋅ 1.007 ⋅ 1.007 ⋅ 1.007 = $1,035.49
 We got $0.49 more!
 These interest rates are why savings accounts suck right now

 Compound interest: 𝛽𝛽𝑛𝑛 = 𝑃𝑃 ⋅ 1 + 𝑟𝑟 𝑛𝑛

 Imagine you could earn 5% a year for 10 years
 Simple interest: 𝛽𝛽𝑛𝑛 = $1,000 + $1,000 � 10 � 0.05 = $1,500
 Compound interest: 𝛽𝛽𝑛𝑛 = $1,000 ⋅ 1.05 10 = $1,628.89



 What if one of your options was to get $1,000 at some point in the future or to get some 
other sum right now?

 Working backwards from $1,000 with a given interest rate, what is the present value of 
that money?
 𝛽𝛽𝑛𝑛 = 𝑃𝑃 ⋅ 1 + 𝑟𝑟 𝑛𝑛

 𝑃𝑃 = 𝐹𝐹𝑛𝑛
1+𝑟𝑟 𝑛𝑛

 Calculating the present value from a future value is called discounting, which finds the 
discounted present value

 If someone promises $1,000 after 6 years with an interest rate of 8% compounded 
annually, the discounted present value is

 𝑃𝑃 = $1,000
1.08 6 ≈

$1,000
1.586874

= $630.17
 Thus, if you can get more than $630.17 right now, it's better to do that
 If you can't, it's better to take $1,000 in the future



 Consider a server you need for a 3-year project
 You have two options:
 Buy the server for $-4,000
 Lease it for four payments: $-1,000 now, $-1,000 in 

a year, $-1,100 in two years, and $-1,150 in three 
years at the end of the project

 Naïve math says that $-4,000 is  better than $-
1,000 + $-1,000 + $-1,100 + $-1,150 = $-4,250

 However, we can apply the discounted present 
value to those later payments (because we 
could have been investing that money)

 As you can see in the table to the right, the 
discounted present value of $-3,943.52 is 
better than $-4,000

n Fn (1 + r)n Fn / (1 + r)n

0 -1000.00 1.00 -1000.00

1 -1000.00 1.05 -952.38

2 -1100.00 1.1025 -997.73

3 -1150.00 1.157625 -993.41

-3943.52



 What if you knew how much someone would pay you today and how much you could get paid in the 
future and needed to compute the rate of return needed to make them match?
 This helps you look for another way to spend your money with a better interest rate
 Or it helps you understand the rate of return that a project provides

 It's simple algebra, solve for r:
 𝛽𝛽𝑛𝑛 = 𝑃𝑃 ⋅ 1 + 𝑟𝑟 𝑛𝑛


𝐹𝐹𝑛𝑛
𝑃𝑃

= 1 + 𝑟𝑟 𝑛𝑛

 𝑟𝑟 = 𝐹𝐹𝑛𝑛
𝑃𝑃

1
𝑛𝑛 − 1

 If you have multiple stages of costs and revenues, you'll need to do a binary search on r values:
1. Start with a minimum bound for r and a maximum bound for r
2. Guess the rate halfway between them
3. Run through the math on the previous slide to see what the net is
4. If it's too high, go back to Step 1 with the minimum and the midpoint as your range
5. If it's too low, go back to Step 1 with the midpoint and the maximum as your range
6. When the minimum and the maximum are close enough together (like 0.001%), you have a good estimate





 The previous examples have been deterministic (no uncertainty)
 But real life often needs stochastic models (which include 

uncertainty)
 To handle uncertainty, we need probability
 A possible outcome is called a sample point
 The set of all possible outcomes is called the sample space
 Each sample point has a nonnegative probability 𝑝𝑝𝑖𝑖where 𝑝𝑝1 +
𝑝𝑝2 + ⋯+ 𝑝𝑝𝑚𝑚 = 1

 In other words, the probability of all sample points together must 
sum to 1

 Note: For those of you who know more probability, sample points 
are events with only a single, mutually exclusive outcome



 Assume each sample point has a value (like the money associated with that outcome)
 The expected value is the value of each sample point multiplied by its probability
 It's the average value of everything, weighted by the probability that it happens

 Example:
 You're playing roulette, always betting on black
 An American roulette wheel has 38 outcomes: 18 are red, 18 are black, and two are neither (0 and 

00)
 If you bet $1 on black:

▪ You have an 18/38 chance of winning $1
▪ You have a 20/38 chance of losing $1

 Expected value = $1 � 18
38
− $1 � 20

38
≈ −$0.05

 Thus, you'll win some and lose some, but on average, you'll lose about $0.05 each time they spin 
the wheel



 Your company needs to install some free software
 There's a 20% chance that the installation will be effortless and cost 

about $100 of worker time
 There's an 80% chance that the installation will be a huge pain and 

cost about $8,000 of worker time
 Expected cost of the installation is:

0.20 � $100 + 0.80 � $8,000 = $20 + $6,400 = $6,420





 Effort E is given in person-days or person months
 Thus, time T could be given by the following equation where 

N is the number of people:
𝑇𝑇 = 𝐸𝐸 / 𝑁𝑁

 Unfortunately, this ideal equation is unlikely to work out for a 
couple of reasons



 Some tasks are easy to split up, and others are not
 If it takes 5 minutes to pump up a bicycle tire, you can't do it 

100 times faster by using 100 people instead of one
 Small tasks can usually only be done by a single person at a 

time
 Larger tasks generally obey the T = E / N rule, but there are 

diminishing returns for large values of N



 Looking at the time to do individual tasks isn't enough
 Consider tasks A, B, and C with the following amounts of effort:
 A: 5 person-months
 B: 3 person-months
 C: 4 person-months

 If we have three employees, one can work on each task
 If the tasks are independent, the project will take 5 months to do, and 

tasks B and C can even run late without delaying the total project
 What if C requires B to be done and B requires A to be done?
 If any task is delayed, the whole project will be delayed
 We have to share work on each task



 Some developers are better than others
 This messes with the overall T = E / N rule

 Some developers have specialized in certain areas
 A tester might be great at testing but not so good at development
 Only one person on the team might have experience with GUIs

 As a consequence, it might not be possible to have multiple 
people working on a given task, and one person might be needed 
for two different tasks

 Agile methodologies supposedly improve these issues by trying to 
make everyone work on everything and grow their skills



 We assume that we have a good estimate of the relationship 
between effort and time

 We assume small tasks assigned to one person
 We assume a dependency between two tasks if only one 

person has the skills needed to do both
 This allows us to look at the problem of specific skillsets as the more 

general problem of dependencies
 With these assumptions, we can organize our tasks by 

duration and dependency



 The following example shows 14 tasks
 The time for each task is given
 The prerequisite tasks that must be done first 

are listed too
 Tasks are numbered so that higher number 

tasks are dependent on lower number tasks
 This way of formatting the information 

doesn't make it easy to figure out several 
things we want to know:
 How long the whole project will take
 Critical tasks, the ones that determine the 

minimum time for the project
 Slack (or float), the amount of time non-critical 

tasks can slip without delaying the project

Task 
Number

Duration 
(Days)

Prerequisite 
Tasks

1 6 -

2 5 1

3 2 1

4 6 1

5 4 2, 3

6 1 4

7 2 4

8 4 4

9 3 2

10 4 5, 6

11 1 7, 8

12 4 9, 10

13 2 6, 11

14 1 12, 13



 Gantt charts let us find total time, critical tasks, and float 
times
 Tasks are represented as rectangles with length proportional to 

duration
 Dependencies between tasks are arrows
 Time increases from left to right
 We put the task starts as early as possible, immediately after their 

last prerequisite finishes



 Here is the full Gantt 
chart

 People don't always 
draw the arrows, but 
we're doing so here to 
be explicit

 Looking carefully at 
the chart, it's clear 
that the project will 
take 24 days

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0                      5                     10                    15                     20                   25



 We can find the critical 
tasks by working 
backward from the 
task(s) with the latest 
finish time

 Whichever of its 
predecessors have the 
latest end time are also 
critical

 If any of these are 
delayed, the whole 
project will be delayed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0                      5                     10                    15                     20                   25



 Non-critical tasks have 
slack, an amount of time 
they can slip by and still 
not delay the project

 Horizontal arrows show 
slack times:
 Task 3: 3 units
 Task 6: 2 units
 Task 7: 6 units

▪ Tricky! It's 6 because that's 
what's needed before a 
critical task will be delayed

 Task 9: 5 units
 Task 13: 4 units

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time
0                      5                     10                    15                     20                   25



 Computer scientists love to use computer science for 
everything, even project management problems

 In addition to Gantt charts, similar information can be 
represented using graphs
 Then, graph theory tools can be applied to the information

 These approaches are called critical path methods (CPM) 
because they focus on making the critical path as short as 
possible



 An important idea that critical path methods add to the mix is a 
tradeoff between time and cost

 Each task has:
 A normal time that the task would take
 A crash time which is the fastest a task could possibly be done by 

spending more resources
 A (usually linear) relationship between putting resources in and getting 

the task done quicker
 By using linear programming, a technique for finding optimal 

solutions to linear systems of equations, the cheapest way to 
finish a project by a given deadline could be determined
 Maybe rushing Task 7 is worth the extra money but rushing Task 10 isn't



 The CPM we will talk about has nodes containing seven pieces 
of information, written in a peculiar way
 ID: Task identifier
 D: Task duration
 ES: Earliest start time
 EF: Earliest finish time
 LS: Latest start time
 LF: Latest finish time
 S: Slack

D

ES
ID

EF

LS LF

S



1

14

4

12

2

13

3

9

4

10

1

11

4

5

1

6

2

7

4

8

5

2

2

3

6

4

6

1



 Every task with no prerequisite has an ES of 0
 For a task with prerequisites, its ES is the maximum EF of all of 

its prerequisites
 For each task, EF = ES + D
 Using these relationships, we can fill in the ES and EF for each 

task, starting from those with no prerequisites and working 
through the rest of the graph



1

23
14

24

4

19
12

23

2

17
13

19

3

11
9

14

4

15
10

19

1

16
11

17

4

11
5

15

1

12
6

13

2

12
7

14

4

12
8

16

5

6
2

11

2

6
3

8

6

6
4

12

6

0
1

6



 Every task that isn't the prerequisite for anything has an LF = 
EF

 For a task that is the prerequisite for something, its LF is the 
minimum LS of the tasks it’s a prerequisite for

 For each task, LS = LF - D
 Using these relationships, we can fill in the LF and LS for each 

task, starting from those that aren't the prerequisites for 
anything and working through the rest of the graph



1

23
14

24

23 24

4

19
12

23

19 23

2

17
13

19

21 23

3

11
9

14

16 19

4

15
10

19

15 19

1

16
11

17

20 21

4

11
5

15

11 15

1

12
6

13

14 15

2

12
7

14

18 20

4

12
8

16

16 20

5

6
2

11

6 11

2

6
3

8

9 11

6

6
4

12

8 14

6

0
1

6

0 6



 For each task, the slack time S = LF – EF
 We can run through the graph and mark that as well
 Nodes with no slack are on the critical path



1

23
14

24

23 24

0

4

19
12

23

19 23

0

2

17
13

19

21 23

4

3

11
9

14

16 19

5

4

15
10

19

15 19

0

1

16
11

17

20 21

4

4

11
5

15

11 15

0
1

12
6

13

14 15

2

2

12
7

14

18 20

6
4

12
8

16

16 20

4

5

6
2

11

6 11

0

2

6
3

8

9 11

3

6

6
4

12

8 14

2

6

0
1

6

0 6

0





 Managers have to track progress
 If a task is done early (sometimes it happens!), the project is ahead of 

schedule
 If a task is done late, the project is behind schedule
 Similarly, cost might be above or below expectations

 If progress doesn't meet expectations, actions must be taken:
 Reduce the features but stay on schedule
 Add more resources (people) but stay on schedule
 Delay the delivery date, which probably also increases costs
 Reduce costs by shrinking the scope, firing people or shortening the 

delivery date or both



 There's a graphical depiction of project management used imply relationships 
between time, scope, cost, and quality

 This triangle is intended to indicate that you can't change scope, time, or cost 
without affecting the other two (at least if you want to maintain quality)

 Increasing scope means increasing time or cost (or both)
 It's obvious, but manager are sometimes tempted to push workers to work 

faster, for example, pretending there are no consequences

Scope

Quality

CostTime



 Fred Brooks is a Turing Award-winning computer scientist who wrote The 
Mythical Man-Month, a book about software engineering

 Brooks' Law: "Adding programmers to a late project makes it later."
 New people have to be trained on the project by existing employees
 This effect gets worse with projects that are close to done since there's more to 

learn
 There are also lower bounds on how fast a project can get done no matter 

how many people you throw at it
 Some tasks can only be done effectively by a single person

 Presumably, there's an ideal team size for a given project, but we do not 
(yet) know how to estimate it



 Stakeholders get mad when bad news is sprung on them at 
the last minute
 Product will be delayed
 Product won't do what it's expected to do
 Product will cost more than expected

 When problems arise, managers should consult with 
stakeholders to see how they want to proceed

 People prefer having input into the response to a bad 
situation



 If a job is expected to take 100 hours, and you've worked for 
50, are you halfway done?
 Probably not!

 Earned value management (EVM) (or earned value analysis
(EVA)) tries to solve this problem
 Progress is how much of the overall project is complete
 Health is a comparison of how much you thought you'd get done 

with how much you did get done
 Value can be measured in person-days or in dollars



 We have talked about ways to decompose a project into tasks and 
how to estimate the effort or cost 0f each task (even if that's still a 
hard problem)
 Planned value (PV) is the estimated cost of a given task

 Using a Gantt chart or CPM, you can make a schedule for all of 
your tasks
 Planned duration (PD) is the estimated time for the entire project

 With the PV for every task and a schedule, you can graph the 
growth of PV over time

 This line ends at the PD, giving the Budget At Completion (BAC), 
the estimated cost of the whole project



 We can map out PV before the project is really underway
 While the project is going, we're interested in two more values 

for each point in time:
 Earned value (EV): The planned value of the tasks that are done
 Actual cost (AC): The effort or money spent on getting those tasks 

done
 It seems strange that we can have three different values for 

each point in time, but what we plan to do differs from what 
we get done, and what we get done doesn't always cost what 
we think it will



 The graph below shows an example of relationships between PV, EV, and 
AC



 Where the EV is relative to the PV shows how much has been 
gotten done relative to what was planned
 If the EV line is below the PV, the project is behind
 If the EV line is above the PV, the project is ahead

 Where the AC is relative to the EV shows how much value has 
been expended relative to how much value was completed
 If the AC is above the EV, the project is over budget
 If the AC is below the EV, the project is under budget



 The Schedule Performance Index (SPI) is EV/PV
 When SPI = 1, the project is right on schedule
 When SPI < 1, the project is behind schedule
 When SPI > 1, the project is ahead of schedule
 Example: Here, the SPI = 360/400 = 0.9, meaning behind schedule

 The Cost Performance Index (CPI) is EV/AC
 When CPI = 1, the project is right on budget
 When CPI < 1, the project is over budget
 When CPI > 1, the project is under budget
 Example: Here, the CPI = 360/378.94 = 0.95, meaning over budget



 Using these numbers, we can predict how well the project is doing
 Forecast Project Duration (FPD) is PD/SPI = PD/(EV/PV)
 The FPD estimates the true project duration based on how far or ahead the 

project is at a given time
 Example: In this case, assuming a planned duration of 30 months, FPD = 30/0.9 = 

33.33 months
 Estimate At Completion (EAC)  is BAC/CPI = BAC/(EV/AC)
 The EAC estimates the true project cost based on how much it has cost to get 

tasks done so far
 Example: In this case, assuming a budget at completion of 1140 (whatevers), 

EAC = 1140/0.95 = 1200
 Using these estimates and EVM charts, managers can make decisions 

about what to do when things are going wrong



 Everything revolves around sprints in Scrum
 We measure progress against the amount of work to be done 

using burn charts
 Burn charts have a vertical axis of work and a horizontal axis 

of time
 Burn up charts show work completed and are more often used to 

track progress on full projects or releases
 Burn down charts show work remaining and are more often used to 

track progress within a sprint



 This burn up chart shows progress 
over a whole project
 13 sprints are planned

 Solid black lines show real 
progress against planned progress

 The horizontal lines on the left 
show estimates of total story 
points needed for the project
 They were revised up from about 

350 to 450 over time
 Although velocity is improving, 

we'll probably have to add sprints 
or reduce features



 This burn down chart shows 
progress made during a three-week 
sprint

 Each dot shows the completion of a 
PBI

 As before, the solid line shows real 
progress against the dotted line of 
planned progress

 If all the story points had been 
finished early, the team could work 
with the PO to add more to the 
sprint backlog

 If some PBIs had not been 
completed, they go back to the 
product backlog



 Task boards are boards showing the current status of all tasks for a sprint
 Tasks are often shown in rows corresponding to a PBI
 Columns might be: To Do, In Progress, In Testing, Done, and similar

 Your Trello boards are approximations of the task boards people use in 
real development

 Tasks boards are not as analytical as burn charts, but they can help in 
other ways:
 Too many things in the To Do column late in a sprint means that PBIs aren't all 

going to get done
 Something stuck in the In Progress column for a while means that more 

developers should help with it
 If it looks like some PBIs are impossible to finish this sprint, the team can focus 

on tasks to get PBIs done that are possible







 Project 4 is due on Friday!
 You have until 11:59 p.m. to turn in all your code
 But you have to demo your project online in class

 Assignment 4 is also due Friday!



 Fill out course evaluations!
 Finish Project 4
 Don't forget Assignment 4
 Final Exam:
 Next Friday, 12/13/2024
 2:45 - 4:45 p.m.


	COMP 3100
	Last time
	Questions?
	Final exam format
	Review
	Software Engineering Design
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Detailed Design
	More depth on class diagrams
	Inheritance and interfaces in class diagrams
	Other associations
	Complex example
	Design Patterns
	Design patterns
	Composite pattern
	Command pattern
	Decorator pattern
	Observer pattern
	Factory method pattern
	Abstract factory pattern
	Singleton pattern
	Strategy pattern
	Adapter pattern
	Construction Techniques
	Bought and customized systems
	Idioms
	Programming style
	Naming
	Layout conventions
	Good commenting
	Questionable commenting
	Data organization
	Version control
	VCS choices
	Quality Assurance in Construction
	Static analysis and dynamic analysis
	Code reviews
	Formal methods
	Unit Testing
	Unit testing
	Developing test cases
	Code coverage
	Example CFG
	Kinds of coverage
	Boundary value analysis
	Other heuristics
	Regression testing
	JUnit
	JUnit classes
	Assertions in JUnit tests
	Assertion example
	Sometimes failing is winning
	Debugging
	Debugging
	Debug code
	Debuggers
	Refactoring
	Common refactoring actions
	Test driven development
	Principles of TDD
	Benefits of TDD
	System Testing
	System testing
	Details of system testing
	Functional alpha testing
	Non-functional alpha testing
	User interface tests
	Beta testing
	Deployment, Maintenance, and Support
	Deployment, maintenance, and support
	Physical architecture
	Modeling physical architecture
	Deployment
	Distribution channels
	Maintenance
	Cost of maintenance
	Support
	Task Identification and Effort Estimation
	Task identification and organization
	Work breakdown structure
	WBS example
	WBS heuristics
	Effort estimation in traditional processes
	Measuring size
	Lines of code
	Function points
	Effort estimation
	Simple models
	Exponential models
	Effort estimation in Scrum
	Detailed estimation in Scrum
	Planning poker
	Financial and Economic Planning
	Finances matter
	Financial conventions
	Time value of money
	Simple interest
	Compound interest
	Discounted present value
	Example: buy or lease
	Internal rate of return
	Uncertainty
	Uncertainty
	Expected value
	Simple example with uncertainty
	Scheduling
	People
	Details of tasks
	Task dependencies
	Personnel capabilities
	Simplifying assumptions
	Dependency example
	Gantt charts
	Full Gantt chart
	Critical tasks
	Slack time
	Critical path methods
	More on critical path
	Nodes in a CPM graph
	Graph showing dependencies
	Earliest start and finish times
	Graph with earliest start and finish times
	Latest start and finish times
	Graph with all start and finish times
	Slack
	Final graph�with slack
	Execution and Control
	Control in traditional projects
	Back to the iron triangle
	Brooks' Law
	Consulting with stakeholders
	Earned value management
	More on EVM
	Earned value and actual cost
	Earned value management with PV, EV, and AC
	Quantifying project problems
	More on quantifying project problems
	Even more on quantifying project problems
	Control in Scrum
	Burn up chart example
	Burn down chart example
	Task boards
	Quiz
	Upcoming
	Next time…
	Reminders

